Electrophysiology of posterior, NaCl-absorbing gills of Chasmagnathus granulatus: rapid responses to osmotic variations.
نویسندگان
چکیده
In the present study, the influence of short-term osmotic variations on some electrophysiological properties related to NaCl absorption across posterior gills of Chasmagnathus granulatus was investigated. The transepithelial potential difference (V(te)) of isolated and perfused gills increased significantly when hyposmotic saline (699 mosmol l(-1)) was used instead of isosmotic solution (1045 mosmol l(-1)). A reduction of the concentration of Na(+) or Cl(-) at constant osmolarity did not produce any change in V(te). Transepithelial short-circuit current (I(sc)) and conductance (G(te)), measured with split gill lamellae mounted in a modified Ussing chamber, also increased after changing to hyposmotic salines (I(sc): from -89.0+/-40.8 microA cm(-2) to -179.3+/-37.0 microA cm(-2); G(te): from 40.5+/-16.9 mS cm(-2) to 47.3+/-15.8 mS cm(-2)). The observed effects of reduced osmolarity were fast, reversible and gradually dependent on the magnitude of the osmotic variation. The activity of the Na(+)/K(+)-ATPase increased significantly after perfusion with hyposmotic saline, from 18.73+/-6.35 micromol P(i) h(-1) mg(-1) to 41.84+/-14.54 micromol P(i) h(-1) mg(-1). Theophylline maintained part of the elevated V(te) induced by hyposmotic saline, suggesting that an increased cellular cyclic AMP level is involved in the response to reduced osmolarity. In summary, the results indicate that the hemolymph osmolarity regulates active transbranchial NaCl absorption by modulating the activity of the basolateral Na(+)/K(+)-ATPase and by changing a conductive pathway, probably at the apical membrane.
منابع مشابه
Using quantitative real-time PCR, the expression of mRNAs encoding three transport-related proteins and one putative housekeeping protein was analyzed in anterior and posterior gills of the euryhaline crab Chasmagnathus
Physiological mechanisms by which euryhaline organisms adapt to changing salinities remain largely unexplored at the molecular level, particularly regarding the regulation of gene expression. The organism selected for the present studies, the semi-terrestrial euryhaline crab Chasmagnathus granulatus, is found in abundance along estuaries of the Atlantic coast of Brazil, Uruguay and Argentina, w...
متن کاملActive NaCl absorption across posterior gills of hyperosmoregulating Chasmagnathus granulatus.
Split lamellae of posterior gills of Chasmagnathus granulatus adapted to 2.5 per thousand salinity were mounted in a modified Ussing chamber. With NaCl-saline on both sides of the preparation a transepithelial voltage (V(te)) of 4.1+/-0.5 mV (outside positive) was measured. After voltage-clamping, the negative short-circuit current (I(sc)) amounted to -142+/-21 micro A cm(-2) at a conductance (...
متن کاملTransepithelial potential differences and Na(+) flux in isolated perfused gills of the crab Chasmagnathus granulatus (Grapsidae) acclimated to hyper- and hypo-salinity.
We studied the transepithelial potential difference (TEPD) and (22)Na flux across isolated perfused gills (anterior pair 5 and posterior pairs 6-8) of the crab Chasmagnathus granulatus acclimated to either hypo- or hyper-osmotic conditions. The gills of crabs acclimated to low salinity, perfused and bathed with 10 per thousand saline solutions, produced the following TEPDs (hemolymph side with ...
متن کاملDopaminergic regulation of ion transport in gills of the euryhaline semiterrestrial crab Chasmagnathus granulatus: interaction between D1- and D2-like receptors.
The effects of dopamine (DA) and dopaminergic agonists and antagonists on ion transport were studied in isolated perfused gills of the crab Chasmagnathus granulatus. DA applied under steady state conditions (perfusion with hemolymph-like saline) produced a transient increase of the transepithelial potential difference (V(te)) from 2.2+/-0.2 to 4.8+/-0.3 mV, describing an initial cAMP-dependent ...
متن کاملGill Na(+),K(+)-ATPase and osmoregulation in the estuarine crab, Chasmagnathus granulata Dana, 1851 (Decapoda, Grapsidae).
Some kinetic properties of gill Na(+),K(+)-ATPase of the estuarine crab, Chasmagnathus granulata, and its involvement in osmotic adaptation were analyzed. Results suggest the presence of different Na(+),K(+)-ATPase isoforms in anterior and posterior gills. They have different affinities for Na(+), but similar affinity values for K(+), Mg(2+), ATP and similar enzymatic profiles as a function of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 206 Pt 3 شماره
صفحات -
تاریخ انتشار 2003